

Carbon nanoparticles: Synthesis, Characterization and Application Prospects

Post-Doc: Albina Mikhraliieva (DSc, Brazil) Supervisor: prof. Volodymyr Zaitsev

Ukraine,2021

What are Carbon Dots?

Problems Control of the morphology and size distribution of CDs are the principal challenges. Structure, composition and photo-physics of CDs are not fully understood. Carbon source and synthesis conditions are crucial criteria of fabrication Unclear mechanism of CDs synthesis Aggregation of the pyrolytic products, most of the bottom-up synthesis results in the mixture of CDs with different particle sizes and surface properties and thus require chromatographic separation Tedious purification of C-dots **Excitation-dependent** behavior \rightarrow the broad size distribution of the prepared particles. ∿em ncreasing the degree of surface .__=320 nm =340 nm 0.8 Carbon cores =360 nm intensity λ___=380 nm 0,6 λ_{exc}=400 nm CDs with fluorophores Normalized λ_=420 nm 0,4 Hydrothermall Molecular fluorophores sythesized CD solution 0,2

Karazin National University

500

Wavelenght (nm)

550

600

0.0

350

400

450

650

Solution

Combination of a traditional preparation method of CDs with pyrolysis of citric acid in a sizelimiting reactor was used to overcome these difficulties and obtain a homogeneous

- Nanoreactor is the porous material with high thermal resistance
- Nanoporous silica gel is a suitable material due to monomodal pore size distribution varying in the range from 2 to 15 nm and has high thermal and chemical stability

SiO2-NH2 a 35 30 b 45 40 b 45 40 siO2(11) siO2(1

Silicas	S _{BET} (m² g⁻¹)	S _{meso} /S _{BET} (%)	Volume pore (cm³ g⁻¹)	Concentration of immobilized groups* (mmol g ⁻¹)	Maximum loading of CA on SiO ₂ -NH ₂ , (g g ⁻¹)
SiO ₂ (4)	360.3	94.9	0.72	0	1.12
SiO ₂ (4)-NH ₂	278.0	100	0.47	0.8±0.2	0.73
SiO ₂ (6)	[b]	—	0.80	0	1.24
SiO ₂ (6)-NH ₂	278.6	100	0.59	0.8±0.1	0.91
SiO ₂ (9)	387.4	99.8	1.01	0	1.57
SiO ₂ (9)-NH ₂	325.8	99.9	0.86	0.9±0.1	1.35
SiO ₂ (11)	400.2	99.6	1.25	0	1.94
SiO ₂ (11)-NH ₂	290.0	99.4	0.95	0.7±0.2	1.47

Karazin National University

Composite characterization. XPS

Photoluminescence

Excitation-dependent

Excitation-independent

Normalized PL spectra of non-fixed CDs from $SiO_2(11)@CDs-480$ (a) and CDs after removing $SiO_2(4)-NH_2@CDs-240$ (b)

Preparation of SiO₂-GOQDs

1.H₂SO₄/H₃PO₄ (180 ml:20 ml) 2.KMnO₄ (9 g) 3.50 °C, 12 h 4.H₂O₂ (30%, 20 ml) 5.Washing with H₂O, HCI, EtOH 6.Vacuum-dry

Ultrason. 2h

GO

GOQDs

SiO₂-GOQDs

Raman spectra

Top-down

Graphite

¹³C CP/MAS RMN, solid state

Detection of hormones

Materiais and application Adsorbents for solidphase extraction CAP MARK **Antibacterial** Silica gel Silica gel and antiviral $H_2N \xrightarrow{HN} H_3N_{*}H_3N_{*}NH_{*}N$ $HN H_3N H_3N$ activity COH NH3 H_2N NH₃ ⊖ -**000**-CDs ⊖ 000-HO-НÓ coo ⊖ OOC SiO₂-GOQDs SiO₂-CDs Modified carbon paste electrode

